If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-19t=13
We move all terms to the left:
4.9t^2-19t-(13)=0
a = 4.9; b = -19; c = -13;
Δ = b2-4ac
Δ = -192-4·4.9·(-13)
Δ = 615.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{615.8}}{2*4.9}=\frac{19-\sqrt{615.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{615.8}}{2*4.9}=\frac{19+\sqrt{615.8}}{9.8} $
| 2x-4=3x-5() | | 26=-8y+2(y+4) | | 5/6x-4=1/2x-4 | | F(x)=x⁵-x³+3 | | 4×+5y=49 | | 3r^2-r+15=8 | | 16(m+5)^2=8 | | 4.9t^2-19t=-13 | | 2x+12=3x-14 | | n/2+18=17 | | (x+4)/3=(x+6)/4 | | Y-5x=1Y+3x=9 | | 9x²-1=0 | | x^2-3x+39=0 | | 32=m | | 320=m | | 5(5y+5)=-100 | | (-4/3)y=-4/5 | | 5(x–1)–2x=3(x+7) | | 4(4y+-4)=0 | | y=39-2 | | 5/6(-3x-9)=-6 | | (2x)x=2¹² | | 2b–4=10 | | (1,2))x+1=(3,2))x-8 | | x^2-3x^2=160 | | (x-1)/5=(x-1)2 | | 3x-5=3x+5. | | 4x+2=5x-1. | | (10x-5)÷5=-7+12 | | 5(5n+2)=235 | | 3w+7=31 |